If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2-72z=0
a = 9; b = -72; c = 0;
Δ = b2-4ac
Δ = -722-4·9·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-72}{2*9}=\frac{0}{18} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+72}{2*9}=\frac{144}{18} =8 $
| 3x/4=2x-1 | | 7z^2+49z=0 | | 12(2x-9)=3(8x+5) | | 4(x+6)=x-3/2 | | 49-f=22+7 | | 11/4y-11/20y-7/15=14/3 | | 1/3x+2/5=2 | | 2x-10+40=90 | | 10(2a-3)=8+5(4+18a) | | (X+5)-x=42 | | 5x+12=16+2x-5 | | 8-2=3x | | 3x-33=6x | | 3(6x-9)=-5 | | 2(x+6)=x-3/2 | | 21-(-3)+6(3+5y)=17+(-4)-3(7-y) | | 3+4n-4=6-7n+1 | | 90=75(4x-25) | | 5x+44=-20 | | 5a-7=4(a+1)+12a+1 | | 20x-24=10x+6 | | 6750=(10)(x)(2) | | 90=15(2y+2 | | x+6=85 | | 4.3r+3.234=321.225 | | 1.5x+0=-x-5 | | 2a-1/4=a+3/9 | | (3x+50)=180 | | 0.1x-5.6=8.34 | | 93=x3x | | 2÷3×n=15 | | 93=x |